
MULTIVERSE: Mining Collective Data Science Knowledge from
Code on the Web to Suggest Alternative Analysis Approaches

Mike A. Merrill
mikeam@cs.washington.edu
University of Washington
Seattle, Washington, USA

Ge Zhang
zhangge9194@pku.edu.cn

Peking University
Beijing, China

Tim Althoff
althoff@cs.washington.edu
University of Washington
Seattle, Washington, USA

ABSTRACT
Data analyses are based on a series of “decision points” includ-
ing data filtering, feature operationalization and selection, model
specification, and parametric assumptions. “Multiverse Analysis”
research has shown that a lack of exploration of these decisions can
lead to non-robust conclusions based on highly sensitive decision
points. Importantly, even if myopic analyses are technically correct,
analysts’ focus on one set of decision points precludes them from
exploring alternate formulations that may produce very different re-
sults. Prior work has also shown that analysts’ exploration is often
limited based on their training, domain, and personal experience.
However, supporting analysts in exploring alternative approaches
is challenging and typically requires expert feedback that is costly
and hard to scale.
Here, we formulate the tasks of identifying decision points and sug-
gesting alternative analysis approaches as a classification task and
a sequence-to-sequence prediction task, respectively. We leverage
public collective data analysis knowledge in the form of code sub-
missions to the popular data science platform Kaggle to build the
first predictive model which supports Multiverse Analysis. Specif-
ically, we mine this code repository for 70k small differences be-
tween 40k submissions, and demonstrate that these differences
often highlight key decision points and alternative approaches in
their respective analyses. We leverage information on relationships
within libraries through neural graph representation learning in
a multitask learning framework. We demonstrate that our model,
MULTIVERSE, is able to correctly predict decision points with up
to 0.81 ROC AUC, and alternative code snippets with up to 50.3%
GLEU, and that it performs favorably compared to a suite of base-
lines and ablations. We show that when our model has perfect
information about the location of decision points, say provided by
the analyst, its performance increases significantly from 50.3% to
73.4% GLEU. Finally, we show through a human evaluation that
real data analysts find alternatives provided by MULTIVERSE to be
more reasonable, acceptable, and syntactically correct than alterna-
tives from comparable baselines, including other transformer-based
seq2seq models.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467455

CCS CONCEPTS
• Applied computing; • Information systems → Web mining;
• Computing methodologies → Neural networks;

KEYWORDS
Robust Data Science, Metascience, Multiverse analysis, Garden of
Forking Paths, seq2seq, Code Representation Learning
ACM Reference Format:
Mike A. Merrill, Ge Zhang, and Tim Althoff. 2021. MULTIVERSE: Mining
Collective Data Science Knowledge from Code on the Web to Suggest
Alternative Analysis Approaches. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’21), August
14–18, 2021, Virtual Event, Singapore. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3447548.3467455

1 INTRODUCTION
A recent study asked twenty-nine teams of well-trained data an-
alysts a narrowly phrased question: do referees give penalties to
dark-skinned soccer players at a higher rate than light-skinned
players [8]? Surprisingly, while individual teams arrived at highly
confident conclusions, there was no overall consensus among these
teams. Crucially, despite access to identical datasets and no appre-
ciable technical errors, teams arrived at their conclusions through
unique analyses which varied in their independent and dependent
variables, model selection, statistical assumptions, and more.
Multiverse Analysis is an emerging concept in statistics and meta-
science which attempts to describe this phenomenon by demon-
strating that analysts must navigate a series of “decision points” in
order to draw conclusions from data [10, 36]. While each of the
choices made at a decision point (such as setting a threshold or
specifying a model) may be entirely reasonable and defensible, so
may many of its alternatives. The resulting set of options produces
a “garden of forking paths” from which analysts traditionally select
only a single path from raw data to results [10].
A growing body of work has identified the large multiverse of possi-
ble analyses as a significant contributor to the reproducibility crisis,
since even minor changes to the analytical path can often materi-
ally alter subsequent results [8, 35]. Accordingly, in recent years
there has been an increased interest in building tools to help data
analysts explore alternative analyses through Multiverse Analysis,
in order to better understand the robustness of reported outcomes
along each path [22, 29].
However, it is very challenging to come up with potential alter-
native analysis approaches. Previous studies show that analysts’
decisions are limited by their methodological experience, educa-
tion, or domain [28], and that computational tools could help these
analysts explore the multiverse more effectively [29]. Critically,

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1212

https://doi.org/10.1145/3447548.3467455
https://doi.org/10.1145/3447548.3467455

¸ Code Snippet Notes

(a)

Original Code model = create_my_model(optimizer='rmsprop')

Our model identifies and
augments keyword arguments
that could belong to decision
points, (such as optimizer),
but preserves user-defined non-
decision point subsequences like
create_my_model.

Predicted
Alternative

model = create_my_model(optimizer='adam')

(b)
Original Code model = DecisionTreeRegressor()

y_hat = model.fit(X_train,y_train).predict(X_train)

Our model correctly identifies
models that are suitable
alternatives for eachother, like
DecisionTreeRegressor
and
RandomForestRegressor

Predicted
Alternative

model = RandomForestRegressor()
y_hat = model.fit(X_train,y_train).predict(X_T)

(c)
Original Code

threshold = 90 #Per definitions
reviews['inspection_result'] = reviews['inspection_score’]\

.apply(lambda x: 1 if x>= threshold else 0)

Our model finds and provides
alternatives for sensitive
thresholds whose manipulation
could potentially alter
downstream analysis

Predicted
Alternative

threshold = 60
reviews['inspection_result'] = reviews['inspection_score’]\

.apply(lambda x: 1 if x>= threshold else 0)

Figure 1: Examples of original code snippets from Kaggle and MULTIVERSE’s generated alternative, with decision points in
the original (𝑥𝐷𝑃) in green and corresponding inserted alternatives (𝑦𝐷𝑃) in red. MULTIVERSE correctly identifies decision
points in input snippets, and copies non-decision point tokens to the output. The model can also provide alternative models,
alternative hyperparameters, and identifies and augments thresholds that may impact downstream tasks.

these tools currently expect analysts to identify decision points and
generate alternative analyses themselves, which requires expertise
or expert feedback that is prohibitively expensive to scale [42].
In this paper, we formalize Multiverse Analysis a composition of
two tasks, Decision Point Classification (identifying key decision
points in code) and Alternative Generation (given a decision point,
formulating code snippets which provide an alternate analysis)
(Section 3). While this formalization permits us to programmatically
support Multiverse Analysis, as of yet no large dataset of Multiverse
Analyses exists with which to train such a model.
Here we turn to the collective expertise of analysts on the web in
the form of popular data science competitions, where thousands of
analysts work on the same task. A central idea of this paper is that
small differences between submissions to each of these competi-
tions contain potential analysis alternatives, allowing us to create a
corpus of 70k alternatives from 40k submissions without additional
costly expert supervision (Section 4.1). For example, an analyst
might change model definitions or hyperparameters between sub-
missions to explore their impact on the analysis outcome.
A second idea is that code libraries tend to be intentionally de-
signed to represent semantic relationships between objects and
functions commonly used in data analysis. For example, sklearn
.clustering.KMeans and sklearn.clustering.DBSCAN are de-
fined in the same submodule (clustering) and could be reasonable
alternatives to one another. We build on this idea by extracting a
large graph (called a “library graph”) of these relationships to learn
suitable code representations (Section 4.2).
Leveraging this dataset representing collective data analysis exper-
tise, we propose a novel neural architecture that is able to (1) detect
decision points in analysis code (Section 5.3.1), and (2) generate
potential alternatives for the analyst to consider (Section 5.3.2).
We additionally (3) integrate structural library information using
a graph neural network approach that informs the learned code
representations (Section 5.3.3). Further, we propose a formulation
of beam search, called “Span-Aware Beam Search”, that limits the

generation of new code to decision points, and leaves surrounding
code unchanged, improving performance in Alternative Generation.
Figure 1 shows examples of MULTIVERSE’s predictions, which
correctly suggest alternative models, parameters, and thresholds.
We evaluate MULTIVERSE’s performance on the tasks defined in
Section 3. We show that MULTIVERSE achieves up to 0.81 ROC
AUC on locating decision points in the “Decision Point Classification”
task, and 88.7% ROUGE-L-F1 on the “Alternative Generation” task
(Section 6). We conduct an ablation study to show that MULTI-
VERSE’s library graph , Span-Aware Beam Search, and multitask
formulation all strictly improve performance on Decision Point
Classification ROC AUC and Alternative Generation ROUGE-L. We
also evaluate our model against comparable seq2seq models for
code, showing that it performs two to three times better than those
models on Alternative Generation (e.g. from 29.2% ROUGE-L Preci-
sion to 93.3%). To simulate the setting where an analyst has already
identified their decision points, we pass information about the loca-
tion of decision points to MULTIVERSE and show that under this
condition performance improves from 50.3% to 73.4% GLEU. Finally,
we show through a human evaluation that real data analysts find
MULTIVERSE’s alternatives to be more reasonable, acceptable, and
syntactically correct than alternatives from comparable baselines,
including other transformer-based seq2seq models.
Our work shows the feasibility of learning to recommend alterna-
tive analyses by mining collective data science knowledge from
the web and has implications for improving reproducability by sup-
porting Multiverse Analysis. We make all code and data used in
this paper available at github.com/behavioral-data/multiverse to
encourage future research and tool development for Multiverse
Analysis.

2 RELATEDWORK
Reproducability & The Data Analysis Multiverse is similar
but distinct from metalearning in that it attempts to describe all
reasonable alternatives, instead of trying to discover the single “best”
one. Prior work on the Data Analysis Multiverse has shown that

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1213

http://github.com/behavioral-data/multiverse

analysts’ decisions can limit reproducability in individual studies
[10], are frequently limited by experience and social pressure (e.g.
pressure from a field to perform a "standard" analysis plan rather
than another) [28], and can produce drastically different results on
the same task [8]. Researchers have developed tools to help analysts
visualize alternative pathways [29, 35], log versions of their own
work [20, 21], and detect false positives [24]. Prior interviews have
indicated that even seasoned data analysts struggle to develop
multiverse alternatives [28]. Therefore, we build on this work and
propose a potential solution that supports analysts by developing
the first model which can automatically suggest multiverse decision
points and alternatives.
Seq2seq for Code. Sequence to sequence (seq2seq) models take a
sequence (such as natural language or code) as input, and generate
a corresponding sequence as output. These models have achieved
significant results on complex tasks like machine translation [1,
39], speech recognition [33] and search [16]. One area focuses
on learning to represent edits, often involving common fixes for
grammar, clarity and style [5, 9, 26].
Deep learning has recently become a powerful tool to apply seq2seq
tasks to code. Typical seq2seq tasks for code include bug fixes [4],
code transformation [38], bug localization [23], API usage genera-
tion [12], etc. SequenceR [4] uses an LSTM encoder-decoder model
with attention and copy mechanisms to generate simple one line
fixes for bugs. Neural Code Translator [38] uses an encoder-decoder
recurrent nerual network (RNN) to learn code changes before and
after pull requests on Github. Lam et al. [23] use a revised Vector
Space Model for bug localization, creating a representation to relate
terms in a bug report to source code tokens. In contrast to these
methods that separate the tasks of token classification and code
generation, we propose a joint learning method for both Decision
Point Classification and Alternative Generation and demonstrate
that this multitask framework leads to improved performance (Sec-
tion 6). Furthermore, by using a BPE Tokenizer and a transformer
architecture, we model an open vocabulary and support longer
sequences than these alternatives.
Graph Representation Learning. Graph representation learning
is a field that aims to embed nodes, edges [11], sub-graphs [7], and
full graphs [30, 41] in a high dimensional vector space that captures
desirable properties of the original graph, such as node distance,
hyperbolicity, or local neighborhoods. In this paper, we incorpo-
rate information from external code libraries by jointly learning
representations of library structure and tokens from code in order
to improve performance (Section 5.3.3). Of particular interest to
this paper is distortion, which describes the degree to which the
pairwise distance between node embeddings reflects their distance
in the original graph [2, 3].

3 MULTIVERSE ANALYSIS TASKS
When a data analyst explores alternative formulations of their
analysis they must identify likely decision points in their code and
then construct a set of reasonable alternatives for each decision
point. These distinct functions could be performed jointly (as in
a multitask framework), or sequentially (first identifying decision
points and only then providing alternatives). Furthermore, a user
may have some strong prior belief about the location of decision

(,)=diff

+ a = 123
- b = 123

+KNN.fit()
-SVM.fit()

+ a = 123

-
b = 123

+ n_e = 10

-
n_ = 1

+KNN.fit()
-SVM.fit()

+KNN.fit()
-SVM.fit()

+ n_epochs = 10
- n_epochs = 1

1 2Mine versions from Kaggle Apply Myers’ diff algorithm

3 Filter diffs 4
Apply word-wise Myers’ diff to label
decision points. Finally, tokenize.

SVM . fit ()

. fit)

Original
snippet and
alternativeKNN (

Decision Point

Figure 2: Our process for mining decision points from Kag-
gle notebooks (Section 4.1)

points, or they could require substantial guidance to detect them
(e.g., due to a lack of experience with alternative approaches).
In this paper we propose to formulate the goal of providing al-
ternative analyses as two distinct prediction tasks: Decision Point
Classification and Alternative Generation. In doing so, we are able to
explore not only our model’s ability to provide useful alternatives,
but also unlock two other avenues for analysis. First, in Section 6
we show that models that solve these tasks independently or treat
our goal as a pure seq2seq task perform worse than a multitask
model which jointly takes both objectives into account. Second, our
multitask framework allows us to bound the model’s performance
under the condition that it has additional information about the lo-
cation of the decision points (Section 6.3). This experimental setting
mirrors the common paradigm where an analyst has some a priori
intuition about which parts of their code they want to “multiverse”,
that is, for which parts they would like to see alternatives.

3.1 Decision Point Classification
Creating an alternative analysis frequently entails making small
edits to existing code, such as changing a hyper-parameter or substi-
tuting one statistical model for another. This identification process
is often non-trivial, even for human analysts, as knowing which
edits to code are likely to materially alter results requires a deep
understanding of the underlying methods [28]. We are therefore
interested in classifying spans of code which are likely to belong
to decision points, and whose modification therefore alters the fi-
nal result. More formally, given a token vocabulary 𝑉 , an input
code sequence 𝑥 = {𝑥𝑡 ∈ 𝑉 }, 𝑡 = 0..𝑁 , and a code alternative
𝑦 = {𝑦𝑡 ∈ 𝑉 }, 𝑡 = 0..𝑁 , we would like to classify the set of sub-
sequences in 𝑥 that do not appear in 𝑦: 𝑥𝐷𝑃 (these are the sub-
sequences that changed and may constitute a decision point and
corresponding alternative). We also define 𝑦𝐷𝑃 as the analogous
set of subsequences that do not appear in 𝑥 .

3.2 Alternative Generation
When a data analyst creates an alternative analysis, they must not
only locate decision points, but also write code to formulate their
alternative approach. Like decision point classification, alternative
generation is difficult even for seasoned analysts because it requires

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1214

a broad knowledge of related statistical methods and creativity to
imagine different formulations of the same strategy. We model
this process as a sequence to sequence (seq2seq) prediction task,
whereby an alternative code snippet can be thought of as a machine
translation of a corresponding snippet from the original analysis.
More formally, we train our model to produce a code alternative𝑦 =

{𝑦𝑡 ∈ 𝑉 }, 𝑡 = 0..𝑁 . Our goal in this machine translation task is find
some 𝑦 that maximizes 𝑃 (𝑦 |𝑥) = ∏𝑡=𝑁

𝑡=0 𝑃 (𝑦𝑡 |𝑥0 ...𝑥𝑁 , 𝑦0 ...𝑦𝑡−1).

4 KEY IDEAS
Next we describe two key ideas of this paper. First, we motivate
and support our hypothesis that a carefully filtered set of Kaggle
submissions represent alternative analyses. Second, we outline how
the graphical structure of code libraries can be mined and incorpo-
rated into a model to help it learn relationships between relevant
semantic entities in code.

4.1 Some Small Differences between Kaggle
Submissions Constitute Alternative
Analysis Approaches

On the popular data science competition website kaggle.com users
compete against each other to answer questions with data, often
for cash prizes. While Kaggle is best known for its machine learn-
ing competitions, users also clean, visualize, explore, and test data
through hosted Jupyter Notebooks. Critically, Kaggle employs a
version control system to publicly host all prior versions of public
scripts. A key insight of this paper is that when a user submits mul-
tiple versions of their analysis using this feature, non-trivial edits
between submissions can be considered as attempts to “multiverse”
their approach. We do not claim that these edits represent “better”
or more “correct” analyses, rather we argue that they represent code
snippets with a common goal set by a user’s intention. As a user
updates their submissions with new data cleaning methods, models,
and evaluation metrics they are in effect expressing an alternate
formulation of their own analysis. These updates are very common
as analysts compete with each other to complete these tasks. Fur-
thermore, since the site contains multiple users’ submissions to the
same problems, these submissions may share a common context.
Taken as a whole, these scripts represent the efforts of tens of thou-
sands of users to solve our tasks of Decision Point Classification
and Alternative Generation (Section 3). We detail our process in for
mining alternatives in Figure 2.
Method. We crawled all versions of all public submissions to all
competitions on Kaggle, yielding 48k submissions with an average
of 9.3 versions of each script, or 450k scripts in total. Since Jupyter
has more than 8 million users and is the most popular IDE among
data analysts, we focus on Python notebook cells as our unit of
analysis [17, 19]. However, the entirety the method presented in
this paper could be applied to any unit of analysis (e.g. function
declarations, individual lines), and any other language that allows
imports from external libraries (e.g. Julia, R, Go).
Processing and Data Filtering. We then used the Myers’ diff
algorithm (which is commonly used to compute git merges) to
find edits between sequential versions of submissions [31]. In or-
der to help our model interpret context, we include a line of un-
changed code above and below each diff. Amanual inspection of the

dataset showed that a portion of these diffs were trivial edits such
as changing a model’s checkpoint directory or reformatting code
for readability. To focus our method on the types of edits that most
reasonably constitute a multiverse analysis, we filtered out diffs
whose edits were changes to whitespace, changes to I/O operations
(e.g. pd.read_csv("v1.csv") → pd.read_json("v2.json")),
diffs that simply rearranged code without changing its semantics
(e.g. a + b → b + a), diffs that appeared to handle plotting (e.g.
fig.set_size(10,5) → fig.set_size(10,10)), and diffs that
simply renamed variables (e.g. clf = KNN() → model = KNN()).
Initial explorations showed that most decision points and alterna-
tives lead to changes of individual functions, function arguments,
and typically involve very few lines of code. Therefore, we remove
all diffs whose total size (including context) is more than five lines,
leaving us with a final dataset of 70k pairs of original snippets and
their alternatives from 40k submissions. For the Decision Point
Classification task (Section 3.1), we again apply Myers’ algorithm
at the word level between the input 𝑥 and its alternative 𝑦 to find
its 𝑥𝐷𝑃 and 𝑦𝐷𝑃 . We make these datasets and all code available at
github.com/behavioral-data/multiverse.
Validation. Data analyses include many different types of deci-
sions. While we expect that decision type classifications will con-
tinue to evolve, possibly beyond the scope of our dataset, Wicherts
et. al [40] contribute a useful taxonomy of nine different decision
point types. We find that our dataset includes examples for all nine
of these decision point types. Table A.1 in the Appendix shows
this taxonomy of decision points with accompanying examples
from our dataset, which demonstrates that our method of mining
examples from Kaggle covers a diversity of decision points and
alternatives. Furthermore, a human evaluation demonstrates that
experienced data analysts are likely to accept machine-generated
alternatives derived from this corpus (Section 6.4).

4.2 Code Libraries Represent Semantic
Relationships

When developers build code libraries, they often organize their
projects so that semantically related function and class definitions
are contained within the same package or module. For example,
in the popular Python scientific computing library scipy, the t-
test (scipy.stats.ttest_ind) is defined in the same module as
Mann-Whitney U (scipy.stats.mannwhitneyu), one of its non-
parametric alternatives. To train ourmodel to learn this information,
we capture a graph of these relationships by mining libraries for
their structure. We note that while we describe a method for mining
this structure from Python, a similar process can be followed for
any other object-oriented language like R or Julia.
Method. First, we mine import statements from our dataset (Sec-
tion 4.1) to find the top tenmost frequently used libraries. For each li-
brary, we start with the file invoked by the highest level import state-
ment (e.g. import scipy) and then recursively create a node in our
graph for each file, and then neighbor nodes for each sub-module
it imports and each function or class defined in the file. For each
class definition, we create neighbor nodes for each of its methods.
For example, the class scipy.stats is the neighbor of scipy, and
has a set of neighbors including scipy.stats.mannwhitneyu and
scipy.stats.ttest. We note that this method is not guaranteed to

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1215

http://github.com/behavioral-data/multiverse

create a tree, since some sub-modules might be imported from mul-
tiple files. Since functions are rarely referenced by their full import
path, at each node𝑢 we store 𝑛𝑎𝑚𝑒𝑢 , the name of the class, function,
or method. For example, the name of scipy.stats.mannwhitneyu
is mannwhitneyu. Later, we will use these names to relate nodes of
the library graph to tokens in code snippets (Section 5.3).
Processing and Data Filtering.Many nodes in the unprocessed
graph (e.g. numpy.testing.decorate_methods) are unlikely to be
of interest to analysts, and so we remove nodes if they have a parent
called testing or test and all private methods. This results in a
graph with over 60k nodes representing submodules, functions,
and classes in popular data analysis libraries. We make these data
available at github.com/behavioral-data/multiverse.

5 METHODS
Here, we describe the core components of MULTIVERSE (Figure
A.1). We model code as a sequence of tokens, allowing for increased
flexibility with respect to partial or syntactically incorrect snippets
(Section 5.1). Our model combines a bidirectional transformer en-
coder with a left to right decoder to incorporate context from the
whole input sequence (Section 5.2). Furthermore, we present a se-
ries of objectives, which we ultimately combine into one multitask
objective (Section 5.3). Finally, we motivate and develop a novel
seq2seq decoding strategy that can decide to simply copy input
sequences into the output (Section 5.4).
Notation. Formally, given a token vocabulary 𝑉 , and and input
code sequence 𝑥 = {𝑥𝑡 ∈ 𝑉 }, 𝑡 = 0..𝑁 , we train our model to
produce a code alternative 𝑦 = {𝑦𝑡 ∈ 𝑉 }, 𝑡 = 0..𝑁 . Our goal in
conditional generation is to estimate:

𝑃 (𝑦 |𝑥) =
𝑡=𝑁∏
𝑡=0

𝑃 (𝑦𝑡 |𝑥0 ...𝑥𝑁 , 𝑦0 ...𝑦𝑡−1) (1)

5.1 Model Inputs
MULTIVERSE represents code as a series of tokens, allowing it to
handle messy, potentially incomplete code that might otherwise
be unparseable to an AST-based method. Furthermore, by using
a bytewise pair encoding (BPE) tokenizer (which splits rare and
unknown words into more commonly occurring subtokens) we
are able to model the large vocabularies that code corpora are
known for [34, 37]. We also insert special tokens <INSERTED> and
</INSERTED> at the beginning and end of subsequences in 𝑦𝐷𝑃

(Section 3.1), whichwe use in Span-Aware Beam Search (Section 5.4).
Crucially, we only use these special tokens in training labels, and not
in inputs, to simulate our use case where the user has no knowledge
about the location of decision points in their code.

5.2 Bidirectional Encoder and Left-To-Right
Decoder

MULTIVERSE combines a bidirectional transformer encoder with
a left-to-right autoregressive decoder, similar to BART [25]. In
MULTIVERSE and associated ablation studies (Section 6.2) we use
four layers in both the encoder and the decoder, and four attention
heads in each.
Encoder.MULTIVERSE uses a bidirectional transformer encoder
with multi-head attention to calculate representations of the tokens

in the input code sequence:

ℎ0 =𝑊𝑒 · 𝑥 +𝑊𝑝 (2)
ℎ𝑖 = TransformerBlock(ℎ𝑖−1), 𝑖 ∈ 1...𝑛 (3)

ℎ𝑛𝑜𝑟𝑚𝑖 = LayerNorm(ℎ𝑖) (4)
𝐸 = ℎ𝑛𝑜𝑟𝑚𝑛 (5)

Where𝑊𝑒 ∈ R |𝑉 |×𝑑𝑒 is an initial embedding matrix and𝑊𝑝 ∈
R𝑁×𝑑𝑒 is a learned positional embedding matrix. We experimented
with embedding sizes, and found 𝑑𝑒 = 128 to perform as well as
larger embedding dimensions. The final input sequence embedding
𝐸 is passed forward to the decoder.
Decoder. The left-to-right auto-regressive decoder generates a
distribution over possible new tokens given the input context 𝑥
and previously decoded tokens. During training, the decoder takes
the alternative 𝑦 shifted to the left (𝑦𝑠ℎ𝑖 𝑓 𝑡) as input, such that
𝑦
𝑠ℎ𝑖 𝑓 𝑡

𝑖
= 𝑦𝑖−1 ∀𝑖 ∈ 1..𝑁 ,𝑦

𝑠ℎ𝑖 𝑓 𝑡

0 = <START_OF_SEQUENCE>. The de-
coder incorporates information from the input context by attending
to the encoder output embedding 𝐸 in each layer.

𝑔0 =𝑊𝑒 · 𝑦𝑠ℎ𝑖 𝑓 𝑡 +𝑊𝑝 (6)
𝑔𝑖 = TransformerBlock(𝑔𝑖−1, 𝐸), 𝑖 ∈ 1...𝑛 (7)

𝑔𝑛𝑜𝑟𝑚𝑖 = LayerNorm(𝑔𝑖) (8)
𝐷 = 𝑔𝑛𝑜𝑟𝑚𝑛 (9)

Finally, we calculate:

𝑃 (𝑦𝑡 |𝑥0 ...𝑥𝑁 , 𝑦0 ...𝑦𝑡−1) = softmax(𝐷𝑡) (10)

5.3 Objectives
5.3.1 Decision Point Classification Loss. To address our decision
point classification task (Section 3.1) we use a token-level classifi-
cation head composed of a single linear layer with cross entropy
loss over the encoder’s final hidden states 𝐸:

𝑥
𝑝𝑟𝑒𝑑
𝑡 = SoftMax(LinearLayer(𝐸𝑡)) (11)

𝑥𝑙𝑎𝑏𝑒𝑙𝑡 =

{
1 if 𝑡 ∈ 𝑥𝐷𝑃

0 otherwise
(12)

L𝑐𝑙𝑠 (𝑥𝑝𝑟𝑒𝑑 , 𝑥𝑙𝑎𝑏𝑒𝑙) = CrossEntropy(𝑥𝑝𝑟𝑒𝑑 , 𝑥𝑙𝑎𝑏𝑒𝑙 , 𝛾) (13)

Where 𝛾 is a positive class weight we adopt to combat class im-
balance, and 𝐸𝑡 is the output embedding of the 𝑡𝑡ℎ input token. In
practice, since decision point tokens represent approximately one
tenth of the total tokens in our corpus, we set 𝛾 = 10.

5.3.2 Alternative Generation Loss. To train our model to generate
alternative analyses (Section 3.2) we adopt a standard seq2seq cross
entropy objective over the output of the model’s decoder:

L𝑎𝑙𝑡 (𝐷,𝑦) = CrossEntropy(SoftMax(𝐷), 𝑦) (14)

5.3.3 Library Graph Loss. In order to teach our model about the
semantic relationships in libraries, we jointly embed our library
graph with tokens from the input sequence. In particular, we opti-
mize for graph distortion, which captures how the pairwise graph
distances between 𝑛 nodes in a graph𝑈 differ from their distance
under a metric 𝑑𝑉 in an embedding space 𝑉 , where 𝑔 : 𝑈 → 𝑉 is a

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1216

http://github.com/behavioral-data/multiverse

function that maps nodes to their embeddings:

𝐷𝑖𝑠𝑡 (𝑔) = 1(
𝑛

2

) ©«
∑

𝑢,𝑣∈𝑈 ;𝑢≠𝑣

|𝑑𝑉 (𝑔(𝑢), 𝑔(𝑣)) − 𝑑𝑈 (𝑢, 𝑣) |
𝑑𝑈 (𝑢, 𝑣)

ª®¬ (15)

The gradient of 𝐷𝑖𝑠𝑡 is undefined at 𝑑𝑉 (𝑔(𝑢), 𝑔(𝑣)) = 𝑑𝑈 (𝑢, 𝑣),
and numerically unstable elsewhere, and so prior work has fo-
cused on finding embeddings that minimize related objectives. In
our setting, we define 𝑑𝑈 (𝑥𝑡 , 𝑥 𝑗) as the undirected shortest path
through the library graph between any two nodes𝑢, 𝑣 whose names
name𝑢 , name𝑣 can be tokenized to include 𝑥𝑡 and 𝑥 𝑗 , respectively.
For example, sklearn’s KNN and SVM modules boths have meth-
ods named predict_proba, and so tokens corresponding to KNN
and SVM would have a library graph distance of two. On average,
45% of the tokens in an input sequence can be related to the graph
through this method. We define library embedding loss as

L𝑙𝑖𝑏 = 𝛽
1(|𝑥𝑔 |
2
) ©«

∑
𝑡, 𝑗 ∈𝑥𝑔 :𝑡≠𝑗

�����𝑑𝑉 (𝐸𝑡 , 𝐸 𝑗)2

𝑑𝑈 (𝑥𝑡 , 𝑥 𝑗)2
− 1

�����ª®¬ (16)

where 𝑥𝑔 is the set of nodes in the graph whose corresponding
tokens appear in the input, 𝐸𝑢 ∈ R𝑑𝑒 is the encoder embedding of
token 𝑢: 𝐸𝑢 , 𝑑𝑉 is a metric over the embedding space, and 𝛽 is a
scaling factor. Since large graphs with low hyperbolicity like ours
have been shown to exhibit the lowest distortion when embedded in
euclidean space, we the 𝐿2 norm as 𝑑𝑉 [3]. Intuitively, this objective
is minimized by embedding input tokens in a space where they are
close to their neighbors in the library graph.
Multitask Objective. In MULTIVERSE we optimize each of these
objectives jointly by adding them into a single multitask objective:

L = _𝑐𝑙𝑠L𝑐𝑙𝑠 + _𝑎𝑙𝑡L𝑎𝑙𝑡 + _𝑙𝑖𝑏L𝑙𝑖𝑏 (17)

where each _ represents a constant weight on each term. In Sec-
tion A.2 we detail which weights were used in the final model, and
the process for determining these values.

5.4 Span-Aware Beam Search
Since decision points typically span only a fraction of the total to-
kens in the input sequence, most input tokens (90% in our dataset)
also appear in the output. For example, in the code sequence clf
= LogisticRegression(X,y), only the tokens corresponding to
LogisticRegression are likely to belong to a decision point (and
are therefore likely to change in the alternative), while most reason-
able alternatives would include the tokens corresponding to clf =
and (X,y). We hypothesize that a model could perform better if it
only had to generate in the “holes” betweens non-decision points.
To test this theory, we propose a modified version of beam search
that forces the model to preserve tokens from the input if the de-
cision point classifier indicates that they are unlikely to change
(Section 5.3.1). Concretely, for each token if the softmax output of
the positive class in the the decision point classification head (Equa-
tion 11) is above some threshold, then we only generate new tokens
between this decision point and the next. Then, the beams pro-
ceed with standard generation until they hit a </INSERTED> token
(at which point the beams are again constricted) or an <END_OF_
SEQUENCE> token (generation ends).

6 EVALUATION
MULTIVERSE achieves a ROC AUC of 0.814 on the decision point
classification task and a ROUGE-L F1 of 93.3% on the alternative gen-
eration task (Section 3). We additionally compare MULTIVERSE’s
performance on these tasks to ablations of the model and several
state-of-the-art neural and non-neural baselines. Furthermore, to
directly evaluate how useful MULTIVERSE’s alternatives are to end
users, we conduct a human evaluation (Section 6.4) and show that
MULTIVERSE performs better than various baselines in syntactical
correctness, reasonableness, and rate of end-user acceptance.
In the following evaluations MULTIVERSE is trained on submis-
sions to 95% of competitions and is evaluated on the remaining
5% such that there is no overlap in submissions or competitions
between the train and test sets. This ensures that the model never
saw test-time analysis tasks during training, creating a conservative
but realistic evaluation paradigm.

6.1 Task 1: Decision Point Classification
Baselines. To evaluate our model’s performance on the decision
point classification task relative to simple non-neural baselines and
models from prior work, we benchmark MULTIVERSE against the
following. Full results are available in Table 1.

• How well does MULTIVERSE’s encoder classify decision
points on its own? To answer this question, we independently
train the MULTIVERSE encoder without loss from the decoder.
We note that this experiment is comparable to BERT [6]. We
denote this model as MULTIVERSE No Decoder.

• Howdoes randomguessing performon this decisionpoint
classification task? To answer this question, we choose 10%
(the proportion of decision points in the train set) of the token
positions and take these tokens as decision points. We denote
this model as Random Guessing.

• How does a simple baseline that uses heuristics from the
train set perform? To answer this question, we construct a
baseline that classifies any token that was labeled as a decision
point in the train set as a decision point in evaluation.

• How well does a sequential neural network for sequence
labeling in NLP work on our task? To answer this question,
we use a BiLSTM model as our baseline. LSTMs have been used
to model source code in the past [13]. This baseline is a multi-
layer bi-directional LSTM (BiLSTM) where the input sequence is
processed both forward and backward [15]. After concatenating
the forward and backward hidden states for each LSTM layer,
we pass them through a linear layer to make the predictions of
which tokens are decision points.

• BiLSTM-CRFHowwell does a BiLSTM-CRFmodel for sequence
labeling tasks works on our task? While BiLSTM only consid-
ers the likelihood of the word being a certain tag, a CRF also
calculates the transition scores [15]. This baseline considers the
likelihood of a token being a certain tag given the previous token.

Discussion. While our two BiLSTM baselines outperform MUL-
TIVERSE on accuracy and by a slim margin on ROC AUC, MUL-
TIVERSE No Decoder achieves the best F1. While these models
perform better than MULTIVERSE, only MULTIVERSE can incor-
porate this information into down-stream Alternative Generation
through its multitask objective and Span-Aware Beam Search. In

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1217

Model Accuracy F1 ROC AUC
MULTIVERSE 64.4% 32.5% 0.814
MULTIVERSE No Decoder 88.7% 45.7% 0.831
Sample from Train Set 15.5% 17.4% 0.517
Random Guessing 83.1% 9.1% 0.500
BiLSTM [15] 91.2% 38.3% 0.828
BiLSTM-CRF [15] 89.8% 40.7% 0.834

Table 1: Comparisons of MULTIVERSE with various
neural models and non-neural baselines for Decision
Point Classification.

ROUGE-L Span-ROUGE-L

Model Precision Recall F1 Precision Recall F1
MULTIVERSE 93.3% 85.9% 88.7% 30.5% 32.1% 25.6%
Neural Code Translator [38] 29.2% 12.3% 15.7% 4.7% 5.7% 4.0%
SequenceR [4] 50.7% 24.9% 31.8% 5.3% 5.2% 4.1%
Copy Original Input 79.2% 76.7% 77.1% 0.0% 0.0% 0.0%
Randomly Replace Tokens 54.1% 55.0% 53.7% 1.3% 1.8% 1.3%
Tree Replace Tokens 15.7% 20.7% 17.3% 2.4% 8.4% 3.1%

Table 2: Comparisons of MULTIVERSE with various neural code
seq2seqmodels and non-neural baselines. Ourmodel consistently
outperforms these baselines.

Alternative Generation Decision Point Classification

ROUGE-L Span-ROUGE-L

Model Precision Recall F1 Precision Recall F1 GLEU Accuracy F1 ROC AUC

MULTIVERSE 1 93.3% 85.9% 88.7% 30.5% 32.1% 25.6% 50.3% 64.7% 32.5% 0.814
No Library Graph 2 92.5% 79.1% 84.5% 29.5% 33.4% 22.5% 39.2% 64.8% 31.8% 0.800
No Span-Aware Beam Search3 91.4% 83.2% 86.2% 33.7% 27.1% 26.1% 49.4% 65.3% 32.2% 0.787
No Multitask4 87.3% 54.8% 64.7% 20.4% 19.6% 17.2% 11.8% 88.0% 44.0% 0.811
Alternative Generation Only5 92.6% 84.5% 87.4% 31.7% 25.3% 24.1% 51.1% N/A N/A N/A
MULTIVERSE- Full Information6 95.8% 93.5% 94.2% 35.0% 30.9% 28.6% 73.4% N/A N/A N/A
1. Our complete multitask model, which includes Span-Aware Beam Search and optimizes L𝑐𝑙𝑠 + L𝑎𝑙𝑡 + L𝑙𝑖𝑏

2. A multitask model which includes Span-Aware Beam Search but not the library graph and optimizes L𝑐𝑙𝑠 + L𝑎𝑙𝑡

3. A multitask model which does not include Span-Aware Beam Search and optimizes L𝑐𝑙𝑠 + L𝑎𝑙𝑡 + L𝑙𝑖𝑏

4. A model in which the MULTIVERSE encode and decode are trained independently
5. A model which only optimizes L𝑎𝑙𝑡

6. A model which receives perfect information about the location of decision points (Section 6.3).

Table 3: Comparison of various ablations of MULTIVERSE. We show that MULTIVERSE model performs best on the Alterna-
tive Generation task with respect to ROUGE-L, and that other ablations of MULTIVERSE perform best by a slim margin on
Span-ROUGE-Lmetrics. Notably,MULTIVERSE outperforms all ablationswhen given access to information about the location
of decision points (Section 6.3).

the next section, we will see how this multitask objective enables
significantly improved generations. Interestingly, this multitask
objective seems to trade increased performance on Alternative Gen-
eration for decreased performance on Decision Point Classification.
This is likely because MULTIVERSE learns to classify tokens to
limit the chance that it makes an error on Alternative Generation.

6.2 Task 2: Alternative Generation
Model Ablations. In order to evaluate how our model’s individual
components contribute to its overall performance, we train several
ablations using different combinations of the components of its
architecture. The results of the following studies are in Table 3.

• MULTIVERSE uses the bidirectional encoder and left-to-right
decoder (Section 5.2), the decision point classification loss L𝑐𝑙𝑠

(Section 5.3.1), the library graph loss L𝑙𝑖𝑏 (Section 5.3.3), and
span-aware beam search (Section 5.4). Formally, we optimize L.

• MULTIVERSE: No Library Graph In this experiment, we try
to understand how much of the model’s performance can be
attributed to information mined from our graph of library struc-
tures (Section 4.2). Accordingly, we optimize our model without
the library embedding loss (Section 5.3.3), but maintain the deci-
sion point classification loss (Section 5.3.1) and the alternative
generation loss (Section 5.3.2). Formally, we optimize L𝑐𝑙𝑠 +L𝑙𝑖𝑏 .

• MULTIVERSE: No Span-Aware Beam Search How does our
model perform without Span-Aware Beam Search, when it can
not explicitly copy likely non-decision-point tokens from the
input? Here, we generate with conventional beam search.

• MULTIVERSE: No Multitask How does our model perform
if we split it by treating our multitask objective as two discrete
tasks? We separately train the encoder on Decision Point Clas-
sification and the decoder on Alternative Generation, then use
predictions from the encoder for Span-Aware Decoding.

• MULTIVERSE: Alternative Generation Only How well does
our model perform if we decide not to include library embedding
loss and decision point classification loss, and focus on Alterna-
tive Generation only? To answer this question, we remove the
corresponding terms from our objective. This baseline is simi-
lar to seq2seq transformer models like BART [25]. Formally, we
optimize L𝑎𝑙𝑡 (Section 5.3.2).

Baselines. We also compare MULTIVERSE to a set of baselines.

• Neural Code TranslatorHowwell does a seq2seq neural model
designed for code perform on our task? To address this question,
we compare MULTIVERSE against the Neural Code Translator
model, which applies an RNN to learn code changes implemented
by developers [38].

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1218

• SequenceRHowwell does a bug fix neural model perform on our
task? To answer this question, we compare MULTIVERSE against
SequenceR, which uses a BiLSTM encoder-decoder model to
generate simple, small patches for buggy code [4].

• Original Input Since decision points and alternatives span only
a small fraction of the total sequence, even a model repeating
the original code sequences could achieve high ROUGE scores.
Therefore, we construct a trivial baseline that completely copies
the original input for reference.

• Randomly Replace Tokens How does a simple baseline that
has no knowledge of where decision points are perform? To
answer this question, we construct a trivial baseline that ran-
domly replaces input tokens with other tokens in the vocabulary.
Consistent with the proportion of decision points in the dataset,
we choose 10% of the token positions at random. If the token is
chosen, we replace it with a random token from the vocabulary.

• Tree Replace Tokens How well does a simple baseline perform
that considers structural information of common libraries? To
address this questions, we construct a baseline that considers
library nodes as decision points and objects and functions that
were defined in the same modules as alternatives. If the token
appears in the library graph, we randomly replace it with a ran-
domly sampled neighbor in the graph.

Metrics.We adopt the standard seq2seq machine translation met-
ric ROUGE-L for evaluating our ablations and baselines on the
alternative generation task [27]. In essence, ROUGE judges sim-
ilarities between prediction and target sequences by measuring
co-occurrences of common n-grams. Since original code snippets
often share a significant portion of their tokens with their alter-
natives, (more than 90% in our corpus) ROUGE-L will inflate the
performance of models that simply copy code from the input to the
prediction without interpreting the significance of decision points.
We therefore also introduce an additional metric “Span-ROUGE-L”,
which is ROUGE-L calculated only over those tokens that belong
to decision points: Span-ROUGE-L(𝑦,𝑦) = ROUGE-L(𝑦𝐷𝑃 , 𝑦𝐷𝑃).
We also include the GLEU metric, which was originally developed
to evaluate machine-generated grammatical error corrections [32].
Similar to ROUGE, GLEU measures n-gram overlap between a gen-
erated and ground truth sequence, but unlike ROUGE it penalizes
models for predicting n-grams from the input sequence that should
have changed in the output. To aggregate, we report the average of
these metrics on each sequence in the dataset.
Discussion. MULTIVERSE performs up to three times better than
other code-specific neural models, such as SequenceR [4] and Neu-
ral Code Translator[1]. Ablations show that all components of our
approach, library graph, Span-Aware Beam Search, and multitask
objective, lead to significant performance improvements across
most evaluation metrics. One exception is the Alternative Gen-
eration model, which performs marginally better than MULTI-
VERSE on GLEU. However, this model is incapable of providing
predictions on the Decision Point Classification task. Importantly, as
shown in the next section, providing these predictions through the
multitask formulation significantly boosts performance for MULTI-
VERSE, from 50.3% to 73.4% GLEU.

Figure 3: MULTIVERSE’s performance under increasing in-
formation about the location of decision points (Section 6.3).

Method Syntax Reasonableness Semantic Acceptance

MULTIVERSE(Our Method) 4.30 3.23 2.94
Alternative Generation Only 3.50 2.66 2.42
SequenceR [6] 2.17 1.48 1.42

Kendall’s𝑊 0.664 0.534 0.462

Table 4: Mean scores from our user study (Section 6.4). Five
is the best possible score in each category. Our method sig-
nificantly outperforms all baselines (𝑝 < 0.01, Wilcoxon’s
Signed Rank). Analysts achieved moderate to substantial
agreement on their ratings (Kendall’s𝑊).

6.3 Simulating Known Decision Points
What if an analyst knew the spans for which they wanted to gener-
ate alternatives? How much better could MULTIVERSE perform?
To answer this question, we pass the ground truth decision point
labels, 𝑥𝑙𝑎𝑏𝑒𝑙 (Section 5.1), to MULTIVERSE’s Span-Aware Beam
Search (Section 5.4). We find that under this condition MULTI-
VERSE’s GLEU Score increases significantly from 50.3% to 73.4%.
Importantly, on Span-ROUGE F1 and Recall MULTIVERSE’s per-
formance increases significantly from 25.6% to 28.5% and 30.5% to
35.0%. This suggests that if MULTIVERSE is given perfect informa-
tion about the location of decision points by an analyst, it delivers
better predictions within those decision points.
How much better does MULTIVERSE’s Decision Point classifier
need to be to reap these benefits? To answer this question, we
take MULTIVERSE’s Decision Point Classification predictions and
with a given probability change the token prediction to be equal to
the ground truth 𝑥𝑙𝑎𝑏𝑒𝑙 . We find that increases in Decision Point
Classification accuracy are approximately linear with increases
in performance on ROUGE, Span-ROUGE, and GLEU. Results are
available in Figure 3. This shows that improvements in Decision
Point Classification would benefit Alternative Generation as well,
even without additional changes to Alternative Generation models.

6.4 Human Evaluation
Ultimately, we are most interested in how useful a model is to an
analyst. In addition to the automatic evaluation, we perform a user
study of MULTIVERSE’s predictions. Here we evaluate not just
how well we do on automated metrics, but how well we perform
on giving alternatives to analysts.
Five PhD-level data scientists with significant experience with
Python for data science and machine learning were recruited as
participants (co-authors were excluded from participation). The
participants were asked to blindly evaluate outputs on their syn-
tactical correctness, general “reasonableness” (defined as how well
the result provided an alternative that a user might find useful)

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1219

and semantic acceptance (defined as how likely each rater would
be to accept the suggestion in the context of a multiverse analy-
sis). The five participants evaluated 50 examples of alternates from
MULTIVERSE and two state-of-the-art neural baselines including
a standard seq2seq transformer-based model (comparable to BART
[25]) and a neural code generation model [38]. We chose these mod-
els for this evaluation because they had the best performance next
to MULTIVERSE on Alternative Generation among the baselines
(Table 2) and ablations (Table 3), respectively. Participants used a
five point Likert scale for a total of 50x3x3x5=2250 ratings.
Notably, MULTIVERSE outperforms the baselines in all three crite-
ria (p<0.01, Wilcoxon’s Signed Rank Test). We observe moderate to
substantial inter-rater reliability on all criteria (0.46-0.66, Kendall’s
W). Results can be found in Table 4. This shows that MULTIVERSE’s
predicted alternatives demonstrate higher syntactical correctness
and reasonableness than comparable models. Furthermore, analysts
are more accepting of MULTIVERSE’s suggestions. We provide a
detailed error analysis of MULTIVERSE’s predictions in Section A.3.

7 CONCLUSION
In this paper we proposed two prediction tasks that support Multi-
verse Analysis [10, 36], a novel practice aimed at improving repro-
ducibility in data science. Identifying decision points and suggesting
alternative analysis approaches were operationalized as a classifica-
tion task and a sequence-to-sequence prediction task, respectively.
We share datasets to support these tasks, based on mining decision
points from kaggle and the graph structures of common libraries
(available at github.com/behavioral-data/multiverse).
We showed that by formulating Multiverse Analysis as a multitask
problem, MULTIVERSE and compares favorably to neural baselines
from prior work on both the decision point classification and alter-
native generation tasks (Section 6). Furthermore, if MULTIVERSE is
given additional information about the location of decision points
through Span-Aware Beam Search (guided by the analyst), its per-
formance increases significantly beyond all other models, from
50.3% to 73.4% GLEU (Section 6.3). Finally, we showed through a
human evaluation that data analysts find MULTIVERSE’s alterna-
tives to be more syntactically correct, reasonable, and acceptable
than alternatives from other transformer and LSTM-based models.
Our work demonstrates the feasibility of learning to recommend
alternative analyses by mining collective data science knowledge
from the web and has implications for improving reproducability
by supporting multiverse analysis.

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine

translation by jointly learning to align and translate. (2014).
[2] I. Chami, A. Wolf, D. Juan, F. Sala, S. Ravi, and C. Ré. 2020. Low-Dimensional

Hyperbolic Knowledge Graph Embeddings. arXiv:2005.00545 (2020).
[3] Ines Chami, Rex Ying, Christopher Re, and Jure Leskovec. 2019. Hyperbolic

Graph Convolutional Neural Networks. NeurIPS (2019).
[4] Zimin Chen, Steve James Kommrusch, Michele Tufano, Louis-Noël Pouchet,

Denys Poshyvanyk, and Martin Monperrus. 2019. Sequencer: Sequence-to-
sequence learning for end-to-end program repair. TSE (2019).

[5] S. Chollampatt and H.T. Ng. 2018. A multilayer convolutional encoder-decoder
neural network for grammatical error correction. arXiv:1801.08831 (2018).

[6] J. Devlin, M.W. Chang, K. Lee, and K. Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805
(2019).

[7] Bijaya et. al. 2018. Sub2Vec: Feature Learning for Subgraphs. In KDD.
[8] Silberzahn et. al. 2018. Many Analysts, One Data Set: Making Transparent How

Variations in Analytic Choices Affect Results. Advances in Methods and Practices

in Psychological Science 3 (2018).
[9] Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao, and Rui Yan. 2017. Style

transfer in text: Exploration and evaluation. arXiv:1711.06861 (2017).
[10] Andrew Gelman and Eric Loken. 2014. The garden of forking paths. (2014).
[11] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In KDD.
[12] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep

API learning. In SIGSOFT.
[13] Vincent J Hellendoorn and Premkumar Devanbu. 2017. Are deep neural networks

the best choice for modeling source code?. In FSE.
[14] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2020. The

Curious Case of Neural Text Degeneration. arXiv:cs.CL/1904.09751
[15] Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional LSTM-CRF Models for

Sequence Tagging. arXiv:cs.CL/1508.01991
[16] J. Weston Hughes, Keng-hao Chang, and Ruofei Zhang. 2019. Generating Better

Search Engine Text Advertisements with Deep Reinforcement Learning. KDD.
[17] JetBrains. 2018. JetBrains Data Science in 2018.
[18] Shaojie Jiang, Pengjie Ren, Christof Monz, and Maarten de Rijke. 2019. Improving

Neural Response Diversity with Frequency-Aware Cross-Entropy Loss. InWWW.
[19] Kyle Kelley and Brian Granger. 2017. Jupyter Frontends: From the Classic Jupyter

Notebook to JupyterLab, nteract, and Beyond. JupyterCon (2017).
[20] M.B. Kery, B.E. John, P. O’Flaherty, A. Horvath, and B.A. Myers. 2019. Towards

effective foraging by data scientists to find past analysis choices. In CHI.
[21] Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Supporting

Exploratory Programming by Data Scientists. In CHI.
[22] Mary Beth Kery and Brad A. Myers. 2018. Interactions for Untangling Messy

History in a Computational Notebook. In VL/HCC.
[23] An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N Nguyen. 2015.

Combining deep learning with information retrieval to localize buggy files for
bug reports (n). In ASE. IEEE.

[24] Etienne P. LeBel, Randy J. McCarthy, Brian D. Earp, Malte Elson, and Wolf
Vanpaemel. 2018. A Unified Framework to Quantify the Credibility of Scientific
Findings. Advances in Methods and Practices in Psychological Science 3 (2018).

[25] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoy-
anov, and L. Zettlemoyer. 2019. BART: Denoising Sequence-to-Sequence Pre-
training for Natural Language Generation, Translation, and Comprehension.
arXiv:1910.13461 (2019).

[26] Piji Li, Wai Lam, Lidong Bing, and Zihao Wang. 2017. Deep recurrent generative
decoder for abstractive text summarization. (2017).

[27] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries.
In Text Summarization Branches Out.

[28] Y. Liu, T. Althoff, and J. Heer. 2020. Paths Explored, Paths Omitted, Paths Obscured:
Decision Points & Selective Reporting in End-to-End Data Analysis. CHI (2020).

[29] Yang Liu, Alex Kale, Tim Althoff, and Jeffrey Heer. 2020. Boba: Authoring and
visualizing multiverse analyses. arXiv:cs.HC/2007.05551

[30] Alireza Mohammadshahi and James Henderson. 2020. Graph-to-Graph Trans-
former for Transition-based Dependency Parsing. arXiv:1911.03561 (2020).

[31] Eugene W. Myers. 1986. AnO(ND) difference algorithm and its variations. Algo-
rithmica 1 (1986).

[32] Courtney Napoles, Keisuke Sakaguchi, Matt Post, and Joel Tetreault. 2016. GLEU
without tuning. arXiv preprint arXiv:1605.02592 (2016).

[33] Daniel Povey and et. al. 2011. The Kaldi speech recognition toolkit. In IEEE
2011 workshop on automatic speech recognition and understanding. IEEE Signal
Processing Society.

[34] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2015. Neural Machine
Translation of Rare Words with Subword Units. CoRR (2015). arXiv:1508.07909

[35] Uri Simonsohn, Joseph P. Simmons, and Leif D. Nelson. 2015. Specification Curve:
Descriptive and Inferential Statistics on All Reasonable Specifications. SSRN
Electronic Journal (2015).

[36] Sara Steegen, Francis Tuerlinckx, Wolf Vanpaemel, and Andrew Gelman. 2016.
Increasing Transparency Through a Multiverse Analysis. Perspectives on Psycho-
logical Science 5 (2016).

[37] A. Svyatkovskiy, S.K. Deng, S. Fu, and N. Sundaresan. 2020. IntelliCode Compose:
Code Generation Using Transformer. arXiv:2005.08025 (2020).

[38] Michele Tufano, Jevgenija Pantiuchina, CodyWatson, Gabriele Bavota, and Denys
Poshyvanyk. 2019. On learning meaningful code changes via neural machine
translation. In ICSE. IEEE.

[39] Wei-Hung Weng, Yu-An Chung, and Peter Szolovits. 2019. Unsupervised Clinical
Language Translation. KDD.

[40] J.M. Wicherts, C.L.S. Veldkamp, H.E.M. Augusteijn, M. Bakker, R.C.M. van Aert,
and M.A.L.M. van Assen. 2016. Degrees of Freedom in Planning, Running,
Analyzing, and Reporting Psychological Studies: A Checklist to Avoid p-Hacking.
Frontiers in Psychology (2016).

[41] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec. 2018. Hierarchical
graph representation learning with differentiable pooling. In NeruIPs.

[42] G. Zhang, M.A. Merrill, Y. Liu, J.Heer, and T. Althoff. 2020. CORAL: COde
RepresentAtion Learning with Weakly-Supervised Transformers for Analyzing
Data Analysis. arXiv:cs.LG/2008.12828

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1220

http://github.com/behavioral-data/multiverse
http://arxiv.org/abs/cs.CL/1904.09751
http://arxiv.org/abs/cs.CL/1508.01991
http://arxiv.org/abs/cs.HC/2007.05551
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/cs.LG/2008.12828

Decision Point Original Alternative
Missing Data train_csv.fillna(method = ’ffill’) train_csv.dropna().reset_index()
Outliers max = np.quantile(duration.values(),0.9) max = np.quantile(duration.values(),0.8)
Filtering weapon = train[train["weaponsAcquired"]<25] weapon = train[train["weaponsAcquired"]<=20]
Data Type cat=KBinsDiscretize(encode=’original’) cat=KBinsDiscretizer(encode = ’ordinal’)
Assumptions pvals = ttest_ind(sales) pvals = ttest_ind(sales,equal_vars=True)
Variable Selection smf.ols(’SALARY_MILLIONS ∼ WINS_RPM’) smf.ols(’SALARY_MILLIONS ∼ POINTS’)
Model Selection SVClr = SVC() KNNclr = KNeighborsClassifier()
Estimation Method make_pipeline(StandardScaler(), RidgeCV) make_pipeline(RobustScaler(), RidgeCV)
Inference Criteria final_vars = results.pvalues <=0.25 final_vars = results.pvalues <=0.15

Table A.1: Taxonomy of types of decision points in our dataset, with real examples from Kaggle of each type of decision point.

A REPRODUCIBILITY APPENDIX
A.1 Availability of Data and Code
We make all data, code, and model checkpoints available at github.com/behavioral-data/multiverse.

A.2 Training Details
We trained every version of MULTIVERSE on a single Nvidia GeForce 2080Ti for 20 epochs. Training took about six hours with 𝑑𝑒 = 128 and
a maximum sequence length of 128 tokens. After a grid search , we found that an initial learning rate of 3𝑒−5 with linear decay to zero
worked best, with _𝑐𝑙𝑎𝑠𝑠 = 1, _𝑎𝑙𝑡 = 1, _𝑙𝑖𝑏 = 0.1.
Early experiments showed that if L𝑙𝑖𝑏 was used early in training MULTIVERSE diverged and ultimately settled into poor local optima. To
compensate, in the final objective we only add this term after a one epoch burn-in period.

A.3 Error Analysis
We conducted a qualitative error analysis of MULTIVERSE’s predictions to identify areas for future improvement. MULTIVERSE’s common
errors can be grouped into three categories: degeneration, semantic failure, and input copying.
Degeneration. Degeneration is a common problem in seq2seq models where generation gets “stuck” in a loop. In one example alternative,
MULTIVERSE predicts y_train, y_test, y_train, y_test until it reaches its maximum length threshold. One likely explanation is that
y_test and y_train are the most likely tokens to follow one another under the language model. Solutions may include alternative sampling
methods (such as top-k sampling or nucleus sampling) instead of beam search [14].
Semantic Failure. One feature of MULTIVERSE is that it can easily be trained on any computer language. However, this flexibility comes
at the expense of built-in information about underlying language syntax. While MULTIVERSE scores highest against comparable models
in syntactical correctness (Section 6.4), we observe that the model still occasionally produces malformed Python code, such as df =,
pd.DataFrame((). Prior work indicates that current-generation language models like ours can learn to generate nearly perfectly correct
code given millions of training examples [37]. We believe that additional pre-training on large unsupervised corpora could mitigate this error.
Input Copying. In some cases, MULTIVERSE appears to have learned to exactly repeat the input sequence as its output. One explanation is
that since input sequences in our dataset on average share 90% of their tokens with their corresponding output sequences, the model can
score reasonably well by naively copying the input. Alternate formulations of cross entropy loss, such as frequency-aware cross entropy loss,
have been shown to promote output diversity [18], and could penalize MULTIVERSE for repeating its input during training. However, in an
early version of the model we implemented this loss function and saw no significant improvement in performance.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1221

http://github.com/behavioral-data/multiverse

Figure A.1: Our MULTIVERSE model, which combines Decision Point Classification, Alternative Generation and library em-
bedding into a multitask objective.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1222

	Abstract
	1 Introduction
	2 Related Work
	3 Multiverse Analysis Tasks
	3.1 Decision Point Classification
	3.2 Alternative Generation

	4 Key Ideas
	4.1 Some Small Differences between Kaggle Submissions Constitute Alternative Analysis Approaches
	4.2 Code Libraries Represent Semantic Relationships

	5 Methods
	5.1 Model Inputs
	5.2 Bidirectional Encoder and Left-To-Right Decoder
	5.3 Objectives
	5.4 Span-Aware Beam Search

	6 Evaluation
	6.1 Task 1: Decision Point Classification
	6.2 Task 2: Alternative Generation
	6.3 Simulating Known Decision Points
	6.4 Human Evaluation

	7 Conclusion
	References
	A Reproducibility Appendix
	A.1 Availability of Data and Code
	A.2 Training Details
	A.3 Error Analysis

