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ABSTRACT

Human cognitive performance is critical to productivity, learning,
and accident avoidance. Cognitive performance varies throughout
each day and is in part driven by intrinsic, near 24-hour circa-
dian rhythms. Prior research on the impact of sleep and circadian
rhythms on cognitive performance has typically been restricted to
small-scale laboratory-based studies that do not capture the vari-
ability of real-world conditions, such as environmental factors, mo-
tivation, and sleep patterns in real-world settings. Given these limi-
tations, leading sleep researchers have called for larger in situ mon-
itoring of sleep and performance [39]. We present the largest study
to date on the impact of objectively measured real-world sleep on
performance enabled through a reframing of everyday interactions
with a web search engine as a series of performance tasks. Our
analysis includes 3 million nights of sleep and 75 million interac-
tion tasks. We measure cognitive performance through the speed of
keystroke and click interactions on a web search engine and corre-
late them to wearable device-defined sleep measures over time. We
demonstrate that real-world performance varies throughout the day
and is influenced by both circadian rhythms, chronotype (morn-
ing/evening preference), and prior sleep duration and timing. We
develop a statistical model that operationalizes a large body of work
on sleep and performance and demonstrates that our estimates of
circadian rhythms, homeostatic sleep drive, and sleep inertia align
with expectations from laboratory-based sleep studies. Further, we
quantify the impact of insufficient sleep on real-world performance
and show that two consecutive nights with less than six hours of
sleep are associated with decreases in performance which last for a
period of six days. This work demonstrates the feasibility of using
online interactions for large-scale physiological sensing.

1. INTRODUCTION
Maintaining optimal cognitive performance has been found to be

important in learning [26], productivity [16], and avoiding indus-
trial and motor vehicle accidents [16, 20]. Studies have demon-
strated that cognitive performance varies throughout the day [43],
likely influencing the quality of our efforts and engagements–in-
cluding how we use and interact with vehicles, devices, resources,
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and applications. Furthermore, cognitive performance is decreased
significantly after loss of sleep [20]. Understanding the real-world
impact of sleep deficiency is critical. It has been estimated that
the cost of fatigue to U.S. businesses exceeds $150 billion a year
in absenteeism, presenteeism, workplace accidents, poor and de-
layed decision-making and other lost productivity on top of the in-
creased health care costs and risk of disease [24]. Despite the im-
portant influences, temporal variations of real-world performance
are not well understood and have never been characterized on a
large scale [39].

Models of daily patterns in human cognitive performance rely
typically on representations of three biological processes: circa-

dian rhythms (time-dependent, behavior-independent, near 24-hour
oscillations) [43], homeostatic sleep pressure (the longer awake,
the more tired you become) [13], and sleep inertia (performance
impairment experienced immediately after waking up) [4, 19].

While models of these biological processes capture well the pat-
terns of cognitive performance in the laboratory [4, 13], they are
based on experimental studies in which participants are deprived of
sleep and undertake regular, artificial tasks to measure performance
instead of non-intrusively capturing performance through everyday
tasks in real-world environments. In addition, these studies typi-
cally include participants that fit a specific physical and psycholog-
ical profile (e.g., those with depressed mood are often excluded).
Further, participants in an artificial setting can be influenced by
their understanding of the study and subconsciously change their
behavior to fit the interpretation of its motivation and goals [35].
While laboratory studies have been critical in developing under-
standings of the basic biological processes that underlie cognitive
performance, they fail to account for myriad influences in the real-
world, including motivation, mood, illness, environmental condi-
tions, behavioral compensation including caffeine intake, and sleep
patterns in the wild that are far more complicated than those en-
forced in research studies. How these and other factors alter real-
world cognitive performance is not well understood. Therefore,
sleep scientists have called for large-scale real-world measurements
of performance and sleep as a necessary step to “to transform our
understanding of sleep” and “to establish how to manage sleep to
improve productivity, health and quality of life” [39].

This Work. We respond to the appeal from the sleep research com-
munity with a large-scale study of sleep and performance enabled
through reframing everyday interactions with a web search engine
as a series of performance tasks. In particular, we use individual
keystrokes when typing a search query and the clicks on search re-
sults as a source of precisely timed interactions. We demonstrate
that the timing of these interactions varies based on biological pro-
cesses and can be used to study the influence of different quantities
of sleep on performance. Search engine interactions offer insight



about real-world cognitive performance as they are an integral part
of many people’s lives and work every day. More than 90% of US
online adults use web search engines, which now handle billions of
searches each day [38].

Our dataset comprises over 3 million nights of sleep tracked
by wearable sensors from 31 thousand users over a period of 18
months and 75 million subsequent real-world performance mea-
surements based on keystrokes and clicks within a web search en-
gine (Section 3). This constitutes the largest prospective study of
real-world human performance and sleep to date (more than 400
times larger than the second largest comparable study which had
only 76 participants [29]).

We first demonstrate that real-world human cognitive performance
captured through search engine interactions varies throughout the
day in a daily rhythm (Section 4). We find that performance is low-
est during habitual sleep times when it is reduced by up to 31%.
Both the shape and magnitude of this temporal variation are con-
sistent with controlled laboratory-based studies, providing valida-
tion of our large-scale performance measures. We also show that
performance varies based on chronotype (morning/evening prefer-
ence) with early risers performing slowest at 04:00 h (4am) and late
risers performing slowest at 07:00 h.

We then develop a statistical model based on chronobiological
research and demonstrate that it successfully disentangles circa-
dian rhythms, homeostatic sleep drive, sleep inertia, and prior sleep
duration—key factors considered in the sleep literature (Section 5).
We quantify that performance varies by 23% based on time of day,
by 19% based on time since wake up, and by 5% based on sleep
duration (Section 5.3). We validate our methodology by demon-
strating close agreement between our model estimates based on a
large amount of performance measurements in the wild and smaller
controlled sleep studies in artificial laboratory settings.

After validating our approach, we extend prior laboratory-based
sleep research through estimates of how sleep impacts performance
in real-world settings. In particular, we quantify the impact of one
or multiple nights of insufficient sleep on real-world performance
(Section 6). We demonstrate that very short and very long sleep
durations, and irregular timing of sleep are associated with 3%, 4%
and 7% lower performance, respectively. We also show that two
consecutive nights with fewer than six hours of sleep are associated
with significantly decreased performance for a period of six days.

Our study is also the first to demonstrate that ambient streams
of data, such as patterns of interactions with devices, can be har-
nessed as large-scale physiological sensors to study and continu-
ously and non-intrusively monitor human performance at popula-
tion scale. The insights and methodology developed in this work
are relevant to sleep scientists in pursuit of larger-scale real-world
measurements of performance, to computer scientists who build
tools and applications that may be affected by variations in human
performance, and to the growing community of researchers who
have been exploring uses of data from online activities to address
questions and challenges in the realm of public health.

2. RELATED WORK

Circadian Processes in Sleep and Performance. Empirical stud-
ies have found daily rhythms in human performance including alert-
ness, attention, reaction time, memory, and higher executive func-
tions such as planning [11]. The daily variations in performance
have been found to be modulated primarily by two processes [18]: a
circadian rhythm (time-dependent, behavior-independent, near 24-
hour oscillations) [43] and a homeostatic sleep drive (the longer
awake, the more tired we become and the more we sleep, the less

tired we become) [13]. The circadian rhythm acts in opposition to
the homeostatic drive for sleep that accumulates across the day, en-
abling a single, consolidated period of wakefulness throughout the
day. A third process has been proposed called sleep inertia [43],
which corresponds to the performance impairment experienced im-
mediately after waking up [4, 19]. In addition to the influence of
daily rhythms on the structure of sleep and performance, there are
also shorter, 90-minute oscillations, ultradian rhythms, that orga-
nize the occurrence of NREM and REM stages during sleep. Ul-
tradian rhythms, circadian rhythms, and homeostatic sleep pressure
can all impact the structure, and likely function, of sleep [17].

Human preferences and natural tendency in the relative timing of
sleep and wake are called chronotypes and are at least partly based
on genetics [40]. Cognitive performance depends on chronotype
and time of day [31]; that is, early/morning types (“lark”) tend to
be higher performing earlier in the day while late/evening types
(“owl”) are higher performing later. Sleep deprivation has been
linked to significant decreases in cognitive performance that lead
to increased risk for accidents and injury [20].

A recent study correlated performance on cognitive exercises
with a sleep measure based on retrospective self-reports of “typical
sleep” in 160 thousand users [42]. However, this measure suffers
from potential biases [28] and does not enable the study of perfor-
mance variation over time based on time of day and sleep timing.
Another study showed that insomnia with short sleep is associated
with cognitive deficits in 678 subjects [22] but only measured a sin-
gle night of sleep to characterize typical sleep patterns after taking
performance measurements, leading to similar limitations. Accord-
ing to a recent meta-analysis [29], the largest study that measured
both sleep and performance concurrently had 76 participants.

Technology Use and Interaction Patterns. Interaction patterns of
different devices and applications have been studied on small scale
to better understand mobile device usage [12], to detect stress [44],
used as biometric signals for authentication [32], and linked to bi-
ological processes [33, 34] including alertness [1]. For example,
less sleep was linked to shorter duration of focus of attention in a
study with 40 participants [30]. Large-scale interaction data have
been used to gain insights into human behavior in the areas of mood
rhythms [23], diet [46], conversation strategies [5], social networks
and mobile games encouraging health behaviors [7, 8, 41], and
health and disease-related search behaviors [36, 47].

This Work. Existing research on sleep and performance is either
small-scale and laboratory-based [29] or relies on subjective mea-
sures such as surveys capturing “typical” sleep [42] which do not
allow for temporal coordination of sleep and performance measure-
ments. As a complement and extension of research to date on per-
formance in artificial laboratory settings, we study real-world cog-
nitive performance which we measure through interactions with a
web search engine. We use objective measurements of sleep (time
in bed) from wearable devices which are preferred to subjective
self-reports that can be significantly biased [28] and that enable us
to study performance variation over time in reference to sleep tim-
ing. This work represents the largest study of objectively measured
sleep and real-world performance to date, employing a subject pool
that is orders of magnitude larger than the largest comparable prior
study [29]. Our study demonstrates on a large scale that interac-
tions with devices are influenced by biological processes and sleep.

3. DATASET
Our dataset contains over 75 million search engine interactions

and sleep measurements for 31,793 US users of Microsoft prod-
ucts who agreed to link their Bing searches and Microsoft Band



Dataset Statistics

Observation period 18 months
# users 31,793
# nights of sleep tracked 3,102,209
# queries 24,590,345
# filtered queries with clicks 6,906,791
# keystrokes extracted 68,779,113
# total interactions 75,685,904
Average keystroke time 225ms
Average click time 9.28s
Median age 38
% female 6.1%
% underweight (BMI < 18.5) 1.4%
% normal weight (18.5 ≤ BMI < 25) 32.4%
% overweight (25 ≤ BMI < 30) 39.2%
% obese (30 ≤ BMI) 27.0%
Median time in bed 7.26h

Table 1: Dataset statistics. BMI refers to body mass index.
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Figure 1: Average sleep duration across age and gender. Our

measurements are consistent with previous estimates [10, 14,

45] (Section 3). Error bars in all figures correspond to 95%

confidence intervals of the corresponding mean estimates.

data for use in generating additional insights or recommendations
about their sleep or activity. Basic dataset statistics and demo-
graphic information on the users are summarized in Table 1. Demo-
graphic variables (age, gender, body mass index) are self-reported
through the Microsoft Health app. While the user age and over-
weight/obesity status closely track official estimates in the United
States, we note that our sample is predominantly male.

Performance. We measure performance through the timing of two
types of interactions with a search engine (Microsoft Bing): (1) in-
dividual keystrokes within the search box that are tracked by the
search engine so it can automatically suggest query completions,
and (2) clicks on the result page after a search query. Section 4.1
provides more details on each of these measures and we discuss
how to account for potential confounds such as the type of query
in Section 5.1. We exclude search engine interactions originat-
ing from mobile devices since such interaction patterns and timing
are fundamentally different from those on desktop devices. While
users could potentially access the search engine from multiple ma-
chines, we note that for most users this is unlikely to be the case
and that using different keyboards and mice throughout the day is
unlikely to explain the timing differences observed in this work.

Sleep. Sleep data from wearable devices provides objective mea-
surements which have been preferred to subjective self-reports that
may be significantly biased [28]. To estimate sleep, we consider
signals from wrist-worn activity trackers (Microsoft Band) that in-

clude a 3-axis accelerometer, gyrometer, and optical heart rate sen-
sor. The Microsoft Band employs internally validated proprietary
algorithms for estimation of sleep and we focus on duration of time
in bed (herein referred to as “sleep duration”). Time in bed is de-
lineated either by manual input of the user (i.e., explicit taps on
the device before going to sleep and immediately after waking up)
or automatically based on movement if the user does not provide
manual input. The use of an event marker to denote bed timing is
widely used in sleep research in lieu of or in concert with sleep di-
aries [9]. Following standard practice [45], we exclude any sleep
duration measurements below 4 and above 12 hours of time in bed.

As evidence that our sleep measurements have face validity, we
show that they match published sleep estimates. Figure 1 illustrates
average time in bed across age and gender. Time in bed decreases
with age and is higher in females than males consistent with pub-
lished estimates [10, 14, 45]. Walch et al. [45] report very similar
times and a difference of 17 minutes between females and males.
With the exception of 60 to 70 year old subjects, we find differences
between 12 and 17 minutes. There is no difference for older sub-
jects, which matches survey-based estimates by Basner et al. [10].
We take these alignments with published research as evidence for
the validity of using wearable device-based sleep data for large-
scale population studies of sleep and performance.

4. PERFORMANCE MEASURES BASED ON

INTERACTIONS DURING SEARCH
Next, we describe two human performance measures derived

from search engine interactions that we use to study daily varia-
tion in performance. We show how these measures exhibit vari-
ations in performance over time and based on chronotype (morn-
ing/evening preference) consistent with findings from laboratory-
based sleep studies. This demonstrates that performance signals
generated from everyday search engine interactions vary based on
biological processes. We model these processes and influences ex-
plicitly in Section 5.

4.1 Performance Measures
We study two real-world performance measures in this work

since it is possible that different measures would respond differ-
ently to sleep deprivation as sleep studies have shown differential
effects of sleep deprivation on different measures of cognition.

Keystroke Time. The first measure is based on keystroke timing.
The search engine’s search box registers every single keystroke
and sends a request for query completions to the search engine’s
servers. We use the timing between two such requests as the time
of a single keystroke if the two queries are different by exactly
one character (not every request is received on the server side)
and within two seconds (larger times indicate longer thought pro-
cesses or separate sessions). This threshold is sensible as an av-
erage keystroke by an average typist takes about 240 milliseconds
(50 words per minute at 5 characters per word [15]).

Click Time. The second measure is based on the time to click on
a search result after a search result page is displayed. We measure
the time between the search query and the first click on any result
on the first page. Click times over two minutes are excluded since
they might stem from interrupted sessions. We account for click
position and query type as described in Section 5.1.

We believe that investigating measures that capture performance
on two different tasks provides robustness and breadth to our anal-
yses. The two tasks rely on different mixes of sensing, reflec-
tion, planning, and formulating, executing, and monitoring of mo-
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Figure 2: Time of day-dependent variation in keystroke (a) and click timing (b). Higher values indicate worse performance. Both the

shape of temporal variation with fastest performance a few hours after wake and slowest performance during habitual sleep times

as well as the magnitude of variation are consistent with controlled laboratory-based studies [3, 18, 20, 48] (Section 4.2).
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Figure 3: Variation in keystroke time throughout the day varies

with chronotype (morning/evening preference) which is defined

based on the average point of mid sleep (Section 4.3). Users

that typically sleep early (light color) perform slowest at about

04:00 h, while medium or late sleepers (darker colors) perform

slowest at 05:00 h and 06:00-07:00 h, respectively. This closely

matches their habitual sleep time and is consistent with con-

trolled laboratory-based studies [31].

tor plans [37]. Studies of the potential subprocesses for each task
and how they might be differentially influenced by sleep is beyond
the scope of this paper. However, our search engine interactions
capture performance in everyday tasks that are highly relevant to
many occupations, as captured by typing and searching for infor-
mation [38], and allow us to non-intrusively measure changes in
real-world performance throughout the day.

Note that all timing measurements are taken on the server side
and not the client side. Therefore, it is important to consider the
potential influence of network latency factors. We found that the
network latency changes only very little between two consecutive
requests (less than 1 millisecond) and thus any latency effects can-
cel out when we take the time difference between two requests (de-
tails in online appendix [6]). This demonstrates that variation in
network latency does not affect our analyses. Furthermore, varia-
tions in site rendering time (i.e., measuring time from first script till
page load completed including dynamic contents) are much smaller
(order of milliseconds) compared to variation in click times.

The temporal variation sensed in performance could potentially
be an artifact of different users contributing timings at different

time points instead of actual within user variation throughout the
day. However, we verified that the temporal variation we observe
is due to within user variation throughout the day by confirming
that the patterns of temporal variation are effectively identical for
raw measurements and within-user normalized variants (Z-scores;
online appendix [6]). We also verified that performance variation
during the weekend is similar to variation during the week (on-
line appendix [6]) and we therefore do not further differentiate be-
tween performance during weekdays and weekends in this paper.
Finally, we considered alternative performance measures based on
backspace usage in keystrokes and spelling errors in search queries.
Since we found results to be similar to keystroke and click timing
but more noisy due to less frequent measurements, we report results
on keystroke and click timing in this paper.

4.2 Temporal Variation of Keystroke and
Click Times

Next, we validate our methodology by considering the findings
obtained from small-scale controlled sleep studies. It is well es-
tablished that human performance varies over time and follows a
circadian rhythm [3, 48]. Keystroke and click timing also vary
throughout the day in a daily rhythm as illustrated in Figure 2.
Keystroke times (Figure 2a) are on the order of 240 milliseconds
which closely matches the expected typing speed of an average
typist (240 milliseconds; 50 words per minute at 5 characters per
word, see [15]). Click times (Figure 2b) are on the order of 10
seconds. Note that both measures follow a similar pattern through-
out the day. Users are fastest to type and click a few hours after
typical wake times and the timing increases again in the evening
hours (in particular for click times). Performance is slowest during
habitual sleep times (e.g., 04:00 h) closely matching accident risk
rates [20] and the anticipated circadian nadir (i.e., the time of great-
est circadian sleep drive) [18]. Furthermore, controlled laboratory
experiments have shown that performance typically varies by 15 to
30 percent over the course of a day across a variety of simple motor
and cognitive tasks [3, 48]. For keystrokes we measure a variation
of 31% and for click times a variation of 12%.

The consistent agreement in shape and magnitude of variation
with controlled lab experiments on human performance and for
two different tasks suggest that these large-scale measures based
on search engine interactions can be used to study sleep and per-
formance. The proposed measures can be collected non-intrusively
at unprecedented scale and shine light on how real-world perfor-
mance varies throughout the day and with changes in sleep.



4.3 Performance Variation by Chronotype
A person’s chronotype encompasses the propensity for the in-

dividual to sleep at a particular time during a 24-hour period and
is at least partly based on genetics [40]. Studies have shown that
performance depends on the alignment of chronotype and time of
day [31]; early types tend to be higher performing earlier in the
day while late types are higher performing later. The individual
chronotype of each user can be defined based on the mid-sleep
point on free days (MSF ) which is the halfway point between go-
ing to sleep and waking up [25, 40]. Many people compensate for
slept debt accumulated during work days by sleeping longer on free
days; that is, the sleep midpoint we observe is later than the internal
biological clock would dictate on the free days. Therefore, sleep
scientists use a midsleep point that is corrected for oversleep (indi-
cated by SC) [25]: MSFSC = MSF−0.5(SDF−(5∗SDW+2∗
SDF )/7), where SDF and SDW are sleep duration and free days
and work days, respectively, and SDF − (5∗SDW +2∗SDF )/7
corresponds to the difference in sleep duration on free days and the
average day. We compute this corrected midpoint for every user in
the dataset using weekdays as work days and weekend days as free
days (Median MSFSC = 4.70).

We show that keystroke times throughout the day vary with chro-
notype (Figure 3), matching results from previous sleep studies [31]
and thus providing further validation of our methods. We find that
early sleepers are slowest at about 04:00 h, while medium or late
sleepers are slowest at 05:00 h and 06:00-07:00 h, respectively.
This closely matches each group’s habitual sleep time and demon-
strates the validity and power of this large dataset; for each chrono-
type group, we have millions of measurements even during typical
sleep times that allow us to estimate these performance curves. We
find similar results for click times.

5. MODELING PERFORMANCE
Having demonstrated that performance of search engine interac-

tions vary over time and based on biological processes (Section 4),
we now operationalize and extend a conceptual model of sleep and
performance from chronobiology [4, 13] to explain the variation
observed in performance measurements. Classic sleep models are
based on circadian rhythms and homeostatic sleep drive [13]. In
addition, we consider sleep inertia and sleep duration [4, 43]. Back-
ground on relevant biological processes is covered in Section 2.

5.1 Conceptual Model
We model the keystroke and click timing based on (1) time of day

in local time, (2) time in hours after wake up, and (3) sleep duration
the previous night. We know (1) from the time of the keystroke
or click time measurement, and (2) and (3) from wearable device-
defined sleep measurements (Section 3).

Since many people wake up during the same morning hours ev-
ery day, time of day and time since wake up are naturally correlated
and challenging to disentangle. In laboratory-based sleep stud-
ies, the goal of exploring the distinct influences of the factors is
achieved by “forced desynchrony” protocols [43], where subjects
are deprived of sleep for extended periods of time. Instead of sim-
ilar interventions, we employ mathematical modeling with a large-
scale dataset of real-world sleep and performance measurements
and use the variation observed across millions of observations to
disentangle the relative contributions of circadian and homeostatic
factors. The large-scale dataset contains numerous performance
measurements during usual (day) and unusual (late night) times
(e.g., Figure 3) that we can use to understand the relative contri-
butions of these factors to performance in the open world (see for-
mulation of additive model in Section 5.2).

Potential Confounding Factors. We control for several factors in
our model to avoid confounding. For keystrokes, we control for the
exact character typed or removed since different characters might
take a varying amount of time (e.g., typing an “a”, or a capital “A”,
or hitting backspace). For click times, it is expected that clicking
on results further down the list of results will take more time, which
holds true in our data (online appendix [6]). We therefore control
for the click position in our model.

Clicking on a result link is preceded by a cognitive process–
interpreting the words displayed on links and deciding which link to
click–which can be quick in the case of navigational queries (e.g.,
“facebook”) or much slower in the case of informational queries
(e.g., “What is the homeostatic sleep drive?”). Formally, this dis-
tinction can be captured through the concept of click entropy, which
measures how “surprising” the distribution over clicked URLs for
a given query is [21]. We find that informational queries take about
two seconds longer than navigational queries on average (online
appendix [6]). Therefore, we control for the click entropy of the
query preceding the click in our model.

An extreme way of controlling for varying queries is to com-
pare click times for exactly identical queries (e.g., popular queries
such as “facebook”). We verified that this yields very similar re-
sults, albeit with larger confidence intervals since the sample size
is reduced dramatically compared to including all queries and con-
trolling for click entropy, demonstrating that the observed patterns
are not due to a particular mix of query types.

In addition, we tested for learning effects as issuing the same
query multiple times might lead to improved performance. How-
ever, most queries, 73.1%, are unique in the dataset and only 4.1%
of queries occur more than three times. Further, we did not find
any evidence for improving performance over time for frequently
occurring queries. This is likely because most users were fairly
proficient at typing before the start of our observation period.

5.2 Mathematical Formulation
We now describe the formulation of the model for keystroke tim-

ing. The model for click times is parallel, where we control for the
click position and click entropy instead of the keystroke type. We
are interested in estimating how (1) time of day, (2) time after wake
up, and (3) sleep duration influence performance. We assume that
all these effects are additive as supported by evidence presented
in [2]. Mathematically, we formulate a fixed-effects model

yi = α+ fk(xk

i ) + f t(xt

i) + fw(xw

i ) + fd(xd

i ) + ǫi ,

where yi is the keystroke time for observation i, α is a constant
intercept, and fk, f t, fw, fd are the unknown functions of interest
for keystroke type, time of day, time since wake up, and sleep dura-
tion, respectively, with corresponding input features xk

i , x
t

i, x
w

i , x
d

i ,
and ǫi is the i-th residual.

Instead of estimating arbitrary functions, we use fine-grained
piecewise constant approximations. We discretize each input space
(e.g., between midnight and 01:00 h, or between 01:00 h and 02:00 h,
or between 0 and 15 minutes after waking up, etc.). We denote
the functions mapping input features xt

i, x
w

i , x
d

i to their respective
bins as bt, bw, bd (note that keystroke type xk

i is already discrete).
Further, we use the functions ck, ct, cw, cd to map the discretized
features to a constant value. The simplified model then becomes
yi = α+ ck(xk

i ) + ct(bt(xt

i)) + cw(bw(xw

i )) + cd(bd(xd

i )) + ǫi .

The outcome of interest in this modeling task are the functions
ct, cw, cd which express the independent impact of (1) time of day,
(2) time since wake up, and (3) sleep duration on performance tim-
ings the next day. We estimate all parameters (α, ck, ct, cw, cd)
including 95% confidence intervals through least squares optimiza-
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Figure 4: Contributions to keystroke (a,c,e; blue) and click time (b,d,f; red) performance of different factors included in our model.

Results are similar for both performance measures and match estimates from controlled sleep studies in the laboratory (Section 5).

For example, variation over the time of day c
t (a,b) shows that performance is slowest during habitual sleep times near the presump-

tive circadian nadir (04:00 h; see main text). Variation across time after wake up c
w (c,d) shows effects of sleep inertia during the

first two hours after wake. There is relative stability for around eight hours in keystroke time but a steady decline in click time after

that point. Sleep durations cd (e,f) of 7.0-7.5 hours are associated with optimal performance according to our measures. However,

note that the impact on overall variation is smaller compared to time of day (a,b) and time since wake up (c,d).

tion. We also experimented with mixed effects models controlling
for variation across users and across queries through random ef-
fects. While standard mixed model libraries do not scale well to the
size of our dataset, we found that these models lead to very simi-
lar estimates compared to the fixed effects model described above
when using subsets of the data.

5.3 Results
The functions ct, cw, cd modeling the influence on cognitive per-

formance of time of day, time since wake up, and sleep duration

are illustrated in Figure 4. Impact on keystroke timings are shown
in blue (Figure 4a,c,e) and impact on click times are shown in
red (Figure 4b,d,f). Note that the shapes of these functions for
keystrokes and click times are very similar and smooth, even though
there are no constraints that would force this to occur. Furthermore,
we note that the temporal variation in cognitive performance is not
explained by variation in different users that contribute timings at
different points throughout the day (i.e., population differences) but
are due to within user variation (online appendix [6]).



Time of Day. Cognitive performance on both keystroke and click
tasks varies with time of day (Figure 4a,b) and is slowest during
habitual sleep time around 04:00-06:00 h. Performance quickly
improves after typical wake times and becomes slightly slower in
the evening for both keystroke and click times (19:00 h). The two
curves consistently match estimates of circadian rhythm processes
in sleep obtained through controlled laboratory experiments [18,
49]. Note that the magnitude of variation is substantial at around
40 milliseconds for keystrokes and over 2.1 seconds for click times,
which are changes of 18% and 23%, respectively, relative to aver-
age timing for each (Table 1).

Time after Awakening. Cognitive performance also varies sub-
stantially with the time after wake up (Figure 4c,d). The magni-
tude of the variation is relatively large at about 42 milliseconds
or 19% for keystrokes about slightly over 1.6 seconds or 17% for
click times. Within the first two hours, performance rapidly im-
proves (i.e., lower timings). This demonstrates a well-known effect
in sleep studies called sleep inertia (Section 2). After this point,
performance is best and slowly worsens until a point of poorest
performance is reached at around 16 hours of wake time, consistent
with the homeostatic sleep drive [13]. This corresponds exactly to
the point when most people would go to sleep again (i.e., a typical
sleep duration of 8 hours). We excluded data beyond the typical
wake period of 16 hours because the data becomes more sparse
and to avoid potential selection effects with regard to the people
who choose to stay awake for exceptionally long periods of time.
However we found similar patterns between both keystrokes and
click times even beyond this point. We note that keystroke time is
relatively stable for about six hours while click times continuously
increase, likely due to the differences in cognitive and motor com-
petencies for the tasks, and due to differences in the sensitivities
of those competencies to status of sleep and circadian rhythm. In
summary, the estimates derived from our model closely capture the
initial sleep inertia and the increasing homeostatic sleep drive first
discovered through laboratory-based studies [4, 43, 49].

Time in Bed. Keystrokes and click time vary with the amount of
time in bed during the previous night (Figure 4e,f). However, we
note that this variation, 12 milliseconds for keystrokes (5%) and
0.25 seconds for click times (3%), is much smaller than the pre-
vious two factors. For both measures, we find a clear U-shaped
curve with its center, indicating optimal performance, at 7.0-7.5
hours of sleep. Both sleeping too little (under 7 hours) or too much
(more than 8-9 hours) are associated with decreased performance.
U-shaped relationships with respect to sleep duration have been re-
ported for several outcomes (e.g., mortality [27]). We further inves-
tigate the impact of insufficient sleep on performance in Section 6.

6. INFLUENCE OF INSUFFICIENT SLEEP

ON PERFORMANCE
Following our studies to validate the methodology (Section 4 and

Section 5), we now extend prior laboratory-based sleep research
with estimates of how sleep influences performance in real-world
settings. In particular, we study the impact of one or multiple nights
of insufficient sleep on performance over the following days.

6.1 Single Nights of Insufficient Sleep
We first consider single nights of sleep and analyze how very

short or very long sleep durations, as well as differences in sleep
timing from the usual patterns within a user, impact performance.
We only show results for keystroke timing here; the results are sim-
ilar for click times (e.g., Figure 2 and Figure 4). Figure 5a shows

that users performed significantly slower when in bed fewer than
6 or more than 9 hours, consistent with the results described in
Section 5.3. In those conditions, the average keystroke times were
about four and seven milliseconds longer compared to sleeping be-
tween 7 and 9 hours (increases of 2.7% and 4.0%, respectively;
both p ≪ 10−10; Mann–Whitney U-test, which is used for all hy-
pothesis tests in this section).

Timing of sleep is also a significant factor for performance the
next day (Figure 5b). While sleeping earlier than usual makes only
a difference of about 1 milliseconds or 0.5% (p ≪ 10−10), go-
ing to bed an hour or more later than usual is associated with sig-
nificantly worse average performance of about 14 milliseconds or
7.3% longer keystrokes (p ≪ 10−10). Note that we limited the
sleep duration to be between 7 and 8 hours long for this analysis
so that these results demonstrate the impact of timing independent
of differences in duration (i.e., those going to sleep later had a nor-
mal length of time in bed despite going to sleep late). We further
verified that these results are not due to people sleeping later and
longer on weekends when they might be typing slower due to less
work pressure as we find similar patterns and effect sizes using just
weekday data. Thus, these results could point to an interaction be-
tween the circadian clock and the ultradian rhythm of sleep (i.e.,
the cycling of sleep stages): sleeping at different phases can re-
sult in different sleep organization [17]. Our findings suggest that
sleeping later in one’s circadian cycle does not satisfy the neural
recovery needed for proper daytime performance, while sleeping
earlier does not have the same negative effects.

6.2 Multiple Nights of Insufficient Sleep
Above, we reported on the effect of a single night of sleep with

particular duration and timing on the next day. Here, we exam-
ine whether multiple insufficient nights of sleep measurably affect
performance and how long this effect appears to persist. For pur-
poses of this analysis, we define an “insufficient” night of sleep
(“I”) to have a time in bed of under six hours (as in [22]), and a
“sufficient” night of sleep (“S”) to have a time in bed of at least six
hours. We consider three different scenarios: two nights of sleep
with more than six hours each (SS), one night over and the next
night under six hours (SI), and two nights under six hours of sleep
(II). We measure the performance after those two nights of sleep for
a period of seven days, reducing the performance on each of these
seven days to a single value—the average performance during the
first 16 hours after wake up (i.e., typical wake period). We do not
consider longer sleep patterns here due to the large number of pos-
sible combinations and data reduction associated with individual
sleep patterns (e.g., a person might not track their sleep every sin-
gle night). Intentionally not controlling for sleep both preceding
and following the two nights of interest, we are addressing how
insufficient sleep impacts real-world performance given real-world
choices. We are not, however, examining the underlying biological
processes of recovery from sleep loss. We note that the start of the
sleep patterns was distributed all throughout the week; for exam-
ple, two nights of sufficient sleep (SS) did occur both during the
week as well as over the weekend. We define recovery time as the
number of days it takes to reach performance levels comparable to
those after a sufficient sleep schedule (SS).

Results. Multiple insufficient nights of sleep have a significant im-
pact on average keystroke timing (Figure 6). Performance is best
after two sufficient nights of sleep, slightly but measurably worse
after one insufficient night of sleep, and significantly worse after
two insufficient nights in a row. Over the first 24 hours, having one
insufficient night of sleep is associated with 1.2% slower perfor-
mance (p ≪ 10−10) and two insufficient nights of sleep are 4.8%
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Figure 5: The impact of sleep duration (a) and timing (b) on performance the next day. Sleep timing is measured through difference

from the typical sleep midpoint and we control for sleep duration. We find that sleeping less than 7 or more than 9 hours is associated

with slower performance (a). Sleeping earlier than usual does not make a large difference but going to bed an hour or more later

than usual is associated with significantly worse performance the next day (b).
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Figure 6: Comparing the impact on performance of zero (SS),

one (SI), or two (II) consecutive insufficient nights of sleep (less

than six hours of time in bed). One night of insufficient sleep

is associated with significantly slower keystroke times and two

insufficient nights in a row exhibit a significantly larger effect.

Judging by when average keystroke time drops below the hori-

zontal dashed line representing the slowest performance for the

group with two nights of sufficient sleep (SS), we observe that it

takes six nights of sleep to return to baseline performance levels

after two nights of insufficient sleep (day 7) and three nights to

return to baseline performance levels after one night of insuffi-

cient sleep (day 4) given real-world sleep schedules.

slower (p ≪ 10−10) compared to two nights with longer than six
hours of sleep each (2.7% and 7.3% increases for click times, re-
spectively; both p ≪ 10−10). Note that these effect estimates take
into account any real-world behavioral compensation such as in-
creased caffeine intake that will help improve performance after
sleep loss. The horizontal dashed line in Figure 6 corresponds to
the slowest keystroke time after two nights of sufficient sleep (SS),
which we use as a conservative point of reference to judge when
performance after insufficient sleep (SI and II) has returned to a
performance below this point. We find that, on average, it takes
three nights to make up one insufficient night of sleep (SI crosses
dashed line on day 4) and six nights two make up two insufficient
nights of sleep in a row (II crosses dashed line on day 7). We find
very similar results for the impact on the variance (i.e., instead of
mean) of keystroke timing as well as for click times. A version

of Figure 6 that visualizes average performance throughout each of
the seven days is included in the online appendix [6].

Note that these results are not simply due to having fundamen-
tally different users contribute to each of the the curves (SS, SI, II).
While some users are more likely to get fewer than six hours of
sleep than others, we do find similar effects by restricting each of
the three curves to be estimated from the exact same set of users.
We note that, since we enforce no constraints on time in bed dur-
ing the seven days following the sleep pattern, additional nights
of insufficient sleep could occur during the follow-up period, con-
tributing to the duration of the recovery period. Thus, we need to
explore whether there is a higher likelihood of sleep deficiencies on
days following the initial observed two-day period of insufficient
sleep. We find that, on average, SS is followed by 0.4 nights of
insufficient sleep during the following seven days, whereas SI and
II are followed by 1.2 and 2.5 such nights. Thus, additional days
of insufficient sleep for the SI and II cases may have an influence
on the overall time to returning to baseline performance. Never-
theless, our findings show real-world timing of return to baseline
performance. We leave to future work the study of more complex
real-world patterns of sleep and sleep deficit and the influences of
sleep deficits on performance.

7. CONCLUSION
Understanding human performance and its relation to sleep is

critical to productivity [16], learning [26], and avoiding accidents
[16, 20]. Human performance is not constant but exhibits daily
variations [43]. Existing research on sleep and performance has
typically been restricted to small-scale laboratory-based studies in-
volving artificial performance tasks in an artificial environment.
Therefore, novel methods of large-scale real-world monitoring, like
we have presented, are necessary to advance our understanding of
sleep and performance [39].

Summary of Results. We presented the largest study to date on
sleep and performance in the wild. Using a new approach to non-
intrusive measurement for both cognitive performance and sleep
we were able to study more than 400 times the number of users
compared to the second largest study. We correlated human per-
formance based on interactions with a web search engine to sleep
measures detected by a wearable device. We demonstrated that
real-world performance varies throughout the day and based on
chronotype and prior sleep, in close agreement with small-scale



laboratory-based studies. We developed a statistical model that op-
erationalizes recent chronobiological research and showed that our
estimates of circadian rhythms, homeostatic sleep drive, and sleep
inertia closely match published results of controlled sleep studies.
Further, we contribute to existing sleep research through quanti-
fying extended periods of lower real-world performance that are
associated with single and multiple nights of insufficient sleep.

Implications. We have demonstrated that human performance can
be measured in a real-world setting without any additional hard-
ware or explicit testing by exploiting existing search engine in-
teractions that occur billions of times per day. We have validated
our methodology and shown that human performance, as measured
through these signals, varies throughout the day and based on chrono-
type and sleep, in close agreement with controlled laboratory-based
studies. Beyond the relevance of the results to extending insights
about sleep and performance, our findings more generally highlight
the potential power of harnessing online activities to study human
cognition, motor skills, and public health. Large-scale physiologi-
cal sensing from online data enables

• studies of sleep and performance outside of small laboratory
settings, and without actively inducing sleep deprivation,

• non-intrusive measurement of cognitive performance with-
out forcing individuals to interrupt their work to perform sep-
arate artificial tasks [39],

• the identification of realistic measures of real-world cogni-
tive performance based on frequent tasks and interactions,

• and continuous monitoring of such measures.
Suitable examples for such data include continuous usage patterns
from computing applications such as email, programming envi-
ronments, bug report systems, office suites, and others. Any in-
sights on performance and productivity gained through monitoring
these applications could be used to improve the user’s awareness of
such patterns and to adapt the user experience appropriately (e.g.,
scheduling tasks intelligently in order to prevent or minimize hu-
man error; scheduling meetings based on participants performance
and chronotype profiles). There are great opportunities ahead to
investigate how such insights could be used to personalize applica-
tions based on relevant biological processes and chronotypes.
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